ENGINEERING SCIENCE (Final) | 1. | Organisms which feed directly or indirectly on producers are called | | | producers are called | |----|---|--|------------|------------------------------| | | (A)
(C) | Prey
Decomposers | (B)
(D) | Consumers
Detritus | | 2. | Expand | ed form of EIA is | | | | | (B)
(C) | Environment and Industrial Act
Environment and Impact Activit
Environmentally Important Acti
Environmental Impact Assessmen | vity | | | 3. | Blue baby syndrome is caused by the contamination of water of | | | ation of water due to | | | (A)
(C) | | (B)
(D) | | | 4. | Which of the following is considered as an alternate fuel? | | | rnate fuel? | | | (A)
(C) | Kerosene
Coal | (B)
(D) | | | 5. | The first major environmental protection act promulgated in India w | | | omulgated in India was | | | \ / | Noise Pollution Act
Water Act | (B)
(D) | Air Act
Environmental Act | | 6. | The dis | truction of ozone in stratosphere i | s due | to | | | (A)
(C) | | (B)
(D) | CFCs
Methane | | 7. | Automo | bile emissions cause environmen | ıtal eff | ects such as | | | | green-house effect
global climate change
both green-house effect and glob
None of the above | oal clii | mate change | | 8. | Sustain | able Development requires chang | e in | | | | (A)
(B)
(C)
(D) | Elimination of Waste
Consumption of Energy
Utilization of Natural Resources
All of the above | . | | | 9. | 9. Which of the following is a non-point source of pollution? | | | of pollution? | | | |-----|---|---|------------|--|--|--| | | (A)
(C) | Storm Runoff
Industrial Wastes | ` / | Sewage Treatment Plants
None of the above | | | | 10. | pH rang | ge of drinking water is | | | | | | | ` / | 6 to 9
5 to 8.5 | \ / | 6.5 to 8.5
None of the above | | | | 11. | Food ch | nain consists of | | | | | | | (C) | Sunlight, Producers, Consumer
Decomposers and Producers
Producers and Decomposers
All of the above | s and I | Decomposers | | | | 12. | Anthroj | pogenic sources of pollution are | | | | | | | (A)
(C) | Natural
Man-made | \ / | Industrial
None of the above | | | | 13. | Minamata disease is due to the contamination of | | | | | | | | ` / | Chromium
Cadmium | (B)
(D) | Nickel
Mercury | | | | 14. | London | smog is due to | | | | | | | | petrol burning coal burning | | diesel burning
None of the above | | | | 15. | Bhopal | gas tragedy was the result of the | releas | e of | | | | | (A)
(C) | Methyle Iso Cyanide (MIC)
Argon | (B)
(D) | Chlorine
Hydrogen | | | | 16. | EIS star | nds for | | | | | | | (A)
(B)
(C)
(D) | Environmental Instructional So
Environmental Impact Statemer
Environmental Industrial Source
None of the above | nt | | | | | 17. | The exp | panded form of MINAS | | | | | | | (A) | Minimum National Service | | | | | (B) Minimum International Standards (C) Minimization of Solids(D) Minimum National Standards | 18. | Eco-ma | Eco-mark is a labeling system given for | | | | | |-----|------------|--|------------|---|--|--| | | (A)
(C) | Eco-friendly Products
Rural Products | (B)
(D) | | | | | 19. | Cleaner | Development Mechanisms reduce | ce | | | | | | (A)
(C) | Manpower
End of Pipe Emissions | (B)
(D) | Accumulation of Wastes
None of the above | | | | 20. | Extinct | ion of flora and fauna in biodiver | sity is | due to | | | | | (A)
(C) | Habitat Destruction
Diseases | (B)
(D) | Hunting and Fishing
Genetic Assimilation | | | | 21. | The pro | ocess catabolism involves | | | | | | | , , | Breaking down of organic waste
Breaking down of complex orga
Breaking down of amino acids
None of the above | | - | | | | 22. | End pro | oducts of aerobic reaction are | | | | | | | (A)
(C) | CH ₄ and H ₄
CO ₂ and H ₂ O | (B)
(D) | NH ₃ and NO ₃
NO ₃ and H ₂ S | | | | 23. | The end | d products of anaerobic reaction a | ire | | | | | | (A)
(C) | O ₂ and H ₂ O
PO ₄ and H ₂ S | (B)
(D) | H ₂ S and NO ₃
CH ₄ and H ₂ | | | | 24. | Leacha | te is the main product of | | | | | | | (A)
(C) | Solid Waste Dumps
Sedimentation | (B)
(D) | Wastewater Treatment
None of the above | | | | 25. | Free re | sidual chlorine availability is kno | wn by | | | | | | (A)
(C) | Reaction of Chlorine
Concentration of Ammonia | (B)
(D) | * | | | | 26. | One of | the primitive methods of treating | sewag | ge is | | | | | (A)
(C) | Sedimentation Disinfection | (B)
(D) | Septic Tank
Digestion | | | | 27. | Domest | nestic Wastewater collection is achieved through | | | | | | |-----|--|---|------------|--|--|--|--| | | (A)
(C) | Network of Treatment Plants
Sewer Network | (B)
(D) | Collection Wells
None of the above | | | | | 28. | Coagula | ation and Flocculation processes | are me | ant to remove | | | | | | (A)
(C) | Organic Solids
Heavy Metals | (B)
(D) | Inorganic Solids
Colloids | | | | | 29. | MPN st | tands for | | | | | | | | (A)
(C) | Most Probable Number
Most Polluted Norm | (B)
(D) | Mixpipox Network
None of the above | | | | | 30. | Indicate | or organisms in water are | | | | | | | | (A)
(C) | Salmonella Typhae
Escherichia Coli | (B)
(D) | Pseudomonas None of the above | | | | | 31. | Steriliz | ation of water kills | | | | | | | | (A)
(C) | All microorganisms
Beneficial microorganisms | (B)
(D) | Pathogens only
None of the above | | | | | 32. | Infection | Infectious diseases are caused by | | | | | | | | (A)
(C) | useful bacteria
aerobes | (B)
(D) | pathogens
anaerobes | | | | | 33. | Remov | Removal of dissolved gases in water is brought about by | | | | | | | | (A)
(C) | digestion coagulation | (B)
(D) | sedimentation aeration | | | | | 34. | For biological treatment BOD ₅ /COD ratio must be | | | | | | | | | ` / | more than 1 0.2 | (B)
(D) | between 0.4 and 0.7 0.3 | | | | | 35. | Hardne | ss in water is caused by | | | | | | | | | Ca ⁺⁺ and Mg ⁺⁺ Ions
Only Anions | (B)
(D) | K ⁺ and Na ⁺ Ions
None of the above | | | | | 36. | Optim | um dosage of coagulant is detern | nined ir | the lab by | | | | | | (A)
(C) | Kjeldhal Operator
Jar Test | (B)
(D) | Mechanical Stirring
Vibrator | | | | | 37. | The term | The term 'Brownian Movement' is used to indicate | | | | | | |-----|--------------------------|--|------------|---|--|--|--| | | (A)
(C) | Random Motion of Colloids
Destabilization of Colloids | (B)
(D) | Stabilization of Colloids
Settling of Colloids | | | | | 38. | The exp | panded form of COD is | | | | | | | | (A)
(B)
(C)
(D) | Chromium Oxygen Demand
Chemical Oxygen Demand | | | | | | | 39. | Physica | al treatment units of water and w | astewat | er treatment are known as | | | | | | (A)
(C) | Unit Operations
Biological Treatment | | Unit Processes None of the above | | | | | 40. | Unit pro | Unit processes of water and wastewater treatment represent | | | | | | | | (A)
(C) | Physico-chemical Units
Chemical Units | (B)
(D) | Biological Units
Both (B) and (C) | | | | | 41. | Therma | al Stratification of lakes in winter | r is | | | | | | | (A)
(C) | reverse
direct | (B)
(D) | inverse
None of the above | | | | | 42. | The fric | ction loss in filter beds is determ | ined by | | | | | | | (A)
(C) | Hazen-Willam's Equation
Carmen-Kozney Equation | (B)
(D) | Differential Equation
Statistical Equation | | | | | 43. | Zeolite | softener is used to remove | | | | | | | | | Toxic Chemicals
BOD | (B)
(D) | COD
Hardness | | | | | 44. | Types o | of settling are classified into | | | | | | | | (A)
(C) | four categories
two categories | (B)
(D) | three Categories
None of the above | | | | | 45. | Critical | deficit of DO in rivers is determ | nined by | ý | | | | | | (A)
(C) | Manning's Equation
Streeter-Phelps Equation | (B)
(D) | Monod's Equation
Michaelis-Menten Equation | | | | | 46. Source-sink relationship in an aquatic system is applied to | | | s applied to | | |---|------------|--|--------------|--| | | | Dissolved Oxygen
Non-Conservative Pollutant | ` / | Conservative Pollutant
None of the above | | 47. | Water o | dispersed in air system is used in | | | | | \ / | Wastewater Treatment
Solid Waste Treatment | ` / | Water Treatment
Hazardous Waste Treatment | | 48. | Grit cha | amber maintains an Horizontal ve | locity | of | | | ` / | 1 m/sec
0.1 m/sec | ` / | 2 m/sec
0.3 m/sec | | 49. | Accelei | rated growth of bacterial cells is to | ermed | as | | | | Lag Phase
Exponential Phase | (B)
(D) | • | | 50. | Biologi | cal sludge retention time (BSRT) | is syn | nbolized as | | | (A)
(C) | • | (B)
(D) | | | 51. | Unit of | Measurement for gaseous polluta | nts is | | | | (A)
(C) | ppm
ppt | (B)
(D) | ppb
μg/m³ | | 52. | Enviror | nmental Protection Act was prom | ulgate | d in India in | | | (A)
(C) | 2002
1986 | (B)
(D) | 1974
1984 | | 53. | Vehicu | lar traffic leads to | | | | | (A)
(C) | Significant Water Pollution
Noise Pollution | (B)
(D) | Significant Allergens
Major Air Pollution | | 54. | Respira | ble particulate matter measures | | | | | (A)
(C) | 0-10 μ
100-1000 μ | (B)
(D) | $10\text{-}100~\mu$ None of the above | | 33 . | Acia Ka | Acid Rain is due to | | | | | | |-------------|--|---|------------|---|--|--|--| | | (C) | Combination of Water and Acid
Reaction of SO ₂ and Humidity
Photochemical Oxidation
None of the above | 1 | | | | | | 56. | Major c | contributors of green-house effect | t are | | | | | | | , , | NO_X and SO_X NH_3 and CO_2 | (B)
(D) | H ₂ S and CH ₄
CH ₄ and CO ₂ | | | | | 57. | Catalyt | ic converters are used in vehicles | for | | | | | | | | improving fuel efficiency exhaust emission control | | increasing speed
None of the above | | | | | 58. | Cyclon | e separators are used | | | | | | | | (A)
(C) | 1 1 | (B)
(D) | to absorb gas
None of the above | | | | | 59. | Maximum mixing depth (MMD) is used to design | | | | | | | | | ` ′ | Effluent Treatment Plant
Domestic Chimneys | | Industrial Stacks
Water Treatment Plant | | | | | 60. | Wind s | peed and direction are represente | d by | | | | | | | (A)
(C) | Gaussian Plume
Windrose Diagram | () | Wind mill
None of the above | | | | | 61. | Electro | static precipitators remove efficie | ently | | | | | | | (A)
(C) | Gaseous Molecules
Toxic Chemicals | (B)
(D) | Turbid Particles
Suspended Particulate Matter | | | | | 62. | Cancer | is caused by | | | | | | | | (A)
(C) | Carcinogens
Bacteria | (B)
(D) | Viruses
Fung | | | | | 63. | Loopin | g of a plume is due to | | | | | | | | (A)
(C) | inversion
lapse rate | (B)
(D) | subversion
adsorption | | | | | 64. | Lapse r | ate is | | | |-----|----------------------|--|-----------------------|--| | | , , | rate of change of reaction increase in temperature | ` / | rate of temperature change
None of the above | | 65. | In an ur | nstable atmosphere rising parcel o | f air r | emains | | | ` ′ | Cooler
Warmer | (B)
(D) | Neutral
Hotter | | 66. | In an ur | nstable atmosphere descending par | rcel o | f air remains | | | (A)
(C) | Cooler
Hotter | (B)
(D) | Warmer
Neutral | | 67. | Compo | unds having the same molecular for | ormul | a are known as | | | . , | Alcohols
Proteins | (B)
(D) | Sugars
Isomers | | 68. | Saturate | ed hydrocarbons are also termed a | S | | | | (A)
(C) | Alkanes
Alkenes | (B)
(D) | Radicals
None of the above | | 69. | Alkene | s belong to | | | | | (A)
(C) | Saturated hydrocarbon
Alcohols | (B)
(D) | Unsaturated hydrocarbon None of the above | | 70. | Equilib | rium pH of a solution containing 1 | $10^{-3} \mathrm{M}$ | I H ₂ SO ₄ | | | (A)
(C) | 6.96
2.70 | (B)
(D) | 7.0
3.0 | | 71. | The rational pH of 7 | | orm to | that in NH ₄ ⁺ form in a solution with a | | | (A)
(C) | 0.014
0.02 | (B)
(D) | 0.012
0.01 | | 72. | Waste 1 | minimization is one of the ways of | | | | | (A)
(C) | recycling waste reducing waste | (B)
(D) | reusing Waste
None of the above | | 73. | The bes | st water distribution network is | | | | | (A)
(C) | Loop System
Deadend System | (B)
(D) | Branch System None of the above | | 74. | Gram n | nolecular weight (GMW) refers | | | |-----|---------------|--|---------|--| | | (A) | Atomic weight in grams | | | | | (B) | | | | | | | Equivalent weight in grams | | | | | ` / | Milli-equivalent weight in grams | S | | | | ` ' | 1 0 0 | | | | 75. | Destabi | lization and removal of colloids n | nainly | depend on | | | (A) | Size | (B) | General Properties | | | (C) | Electro-kinetic Properties | (D) | None of the above | | 76. | Iso-elec | etric point is also termed as | | | | | (A) | negative charge | | | | | ` ′ | positive charge | | | | | (C) | | e | | | | | point of zero charge | | | | 77. | Mass co | urve method is adopted to determi | ne | | | | (4) | Well are CF and a discount | (D) | V. 1 CC. 1: | | | | Volume of Equalization tank Volume of Digester | \ / | Volume of Sedimentation Tank
Volume of Filter | | | (C) | Volume of Digester | (D) | Volume of Priter | | 78. | Which treatme | | suspe | nded growth system of biological waste | | | (A) | Trickling Filter | | (B) UASB | | | (C) | | | (D) Secondary Clarifier | | | ` ′ | | | • | | 79. | In anae | robic digestion % conversion of a | cetic a | acid to methane is | | | (A) | 50% | (B) | 60% | | | (C) | 72% | (D) | 75% | | 80. | Fluorin | netric measurements are based on | a nhei | nomenon | | 00. | Tidomi | icure measurements are based on | a piici | Homenon | | | (A) | Fluorescence | (B) | Absorbance | | | (C) | Transmission | (D) | None of the above | | 81. | Workin | g of Flame Photometer is based o | n | | | | (A) | Optical Method | (B) | Emission Method | | | (C) | Resonance Method | (D) | | | 82. | Sludge | thickeners are used in wastewater | treati | ment for | | | () | ut' | (D) | 1 | | | (A) | settling | (B) | digestion | | | (C) | solid-liquid Separation | (D) | None of the above | | 0.2 | T 4 1 | 1 CO POD 1 1 200 C | | | | | | |-----|---|---|----------|----------------------------------|--|--|--| | 83. | Treated | l effluent BOD ₅ standard at 20 ^o C i | IS | | | | | | | (A) | 100 mg/L | (B) | 30 mg/L | | | | | | (C) | _ | ` / | 75 mg/L | | | | | 84. | Attache | ed growth system of waste treatme | ent is p | preferred due to | | | | | | (A) | maximum surface area | (B) | maximum depth | | | | | | (C) | maximum length | (D) | | | | | | 85. | Organio | c farming is a farming without | | | | | | | | (A) | pesticides | | | | | | | | | green manures | | | | | | | | ` / | synthetic fertilizers | | | | | | | | | both synthetic fertilizers and pes | sticide | S | | | | | 86. | The pro | ocess of removing contaminants fr | om so | oil and groundwater is termed as | | | | | | (A) | bioengineering | (B) | bioprocess | | | | | | (C) | bioremediation | (D) | None of the above | | | | | 87. | The ma | ximum noise level that human ca | n hear | is | | | | | | (A) | 120 dB | (B) | 140 dB | | | | | | (C) | 80 dB | (D) | 190 dB | | | | | 88. | Methaenoglobanemia is caused by the contamination of water due to | | | | | | | | | (A) | Phosphates | (B) | Nitrates | | | | | | (C) | Sulphates | (D) | Chromites | | | | | 89. | Accumulation of heavy metals in the aquatic flora and fauna is called | | | | | | | | | (A) | Bioconcentration | (B) | Biosettling | | | | | | (C) | Biooxidation | (D) | Biomagnification | | | | | 90. | Geome | Geometric method is one of the methods to forecast | | | | | | | | (A) | population | (B) | water demand | | | | | | (C) | wastewater | (D) | None of the above | | | | | 91. | Low bio | omass production is expected in | | | | | | | | (A) | conventional ASP | (B) | extended aeration | | | | | | (C) | oxidation ditch | (D) | high rate ASP | | | | - 92. Instream standards refer to - A) Effluent Discharge Standards - (B) Raw Wastewater Characteristics - (C) Receiving Stream Standards - (D) None of the above - 93. Slowly biodegradable organics are termed as - (A) inorganic elements - (B) organic elements - (C) hazardous elements - (D) refractory organics - 94. Microbial metabolic pathway consists of - (A) catabolism and anabolism - (B) hydrolysis and anabolism - (C) oxidation and catabolism - (D) None of the above | 95. | Increase in dissolved oxygen is observed during | | | | |------|--|---|------------|---| | | (A)
(C) | | (B)
(D) | | | 96. | Coagul | ant aid is generally used in | | | | | (A)
(C) | water treatment
hazardous Waste Treatment | (B)
(D) | | | 97. | Drinking water turbidity according to Bureau of Indian Standards (BIS) is | | | of Indian Standards (BIS) is | | | (A)
(C) | 20 NTU
5 NTU | (B)
(D) | | | 98. | Eco-ma | ark is an eco-label used in | | | | | (A)
(C) | United Kingdom
United States of America | (B)
(D) | Russia
India | | 99. | Enviror | nmental (Protection) Act, 1986 wa | as proi | nulgated in India after | | | (A)
(C) | | (B)
(D) | 1 0 3 | | 100. | Maintenance of good public health and sanitation is the prime duty of municipalities in India according to | | | on is the prime duty of | | | (A)
(C) | 69 th Amendment
73 rd and 74 th Amendment | (B)
(D) | 70 th Amendment
None of the above | | 101. | Net nat | ional product refers to | | | | | (A)
(B)
(C)
(D) | GDP – Investments on Pollution
GDP
GDP + Investments on Pollution
GDP – Investments on Pollution | n Cont | rol | | 102. | Pollutar | nt's concentration is predicted usi | ing | | | | (A)
(C) | Advanced Instruments
Titration Methods | (B)
(D) | Environmental Modelling
None of the above | | 103. | The cor | mmon problem in lakes across the | e globe | e is | | | (A)
(C) | Thermal Stratification
Eutrophication | (B)
(D) | Sedimentation
Coagulation | | 104. | Wastew | vater from bathrooms and kitchen | is gen | erally referred as | | | (A)
(C) | White Water
Green Water | (B)
(D) | Yellow Water
Grey Water | |------|------------|---|------------|--| | 105. | Bio-die | sel is obtained from | | | | | (A)
(C) | Pongamia Pinnata
Jattropha | (B)
(D) | Teak
None of the above | | 106. | What po | ercentage of country's geographic | cal are | a should have forest cover? | | | ` / | 33%
13% | (B)
(D) | | | 107. | All ring | compounds fall into the category | y of | | | | | Alkenes
Isometric Compounds | (B)
(D) | | | 108. | An adso | orption isotherm represents | | | | | (A)
(C) | settling rate sorbed concentration | (B)
(D) | reaction rate
None of the above | | 109. | Adsorp | tion process is a | | | | | (A)
(C) | physical phenomenon
biological phenomenon | (B)
(D) | physico-chemical phenomenon chemical phenomenon | | 110. | Major n | nuclear radiations include | | | | | (A)
(C) | α , β and γ β , λ and μ | (B)
(D) | α,β and λ α,μ and ω | | 111. | No grov | wth phase of bacterial cells is refe | erred a | s | | | (A)
(C) | Endogenous phase exponential phase | (B)
(D) | stationary phase
lag phase | | 112. | The terr | m ppt refers to | | | | | (A)
(C) | Precipitation Parts per tonne | (B)
(D) | Parts per trillion
None of the above | | 113. | The ricl | nest eco-systems in the world are | | | | | (A)
(C) | Wetlands
Deserts | (B)
(D) | Forests
Mountains | | 114. | 4. The percentage of earth's total surface covered with water is | | | with water is | |---|--|---|------------|--------------------------------------| | | (A)
(C) | | (B)
(D) | 60%
80% | | 115. Spreading of deserts all over is termed as | | | | | | | (A)
(C) | Non-desert
Spread Desert | (B)
(D) | Desertification None of the above | | 116. | Deserts | experience | | | | | (A)
(C) | very cold climate extreme climate | (B)
(D) | 2 | | 117. Available free residual chlorine is identified at | | | | | | | (A)
(C) | extreme point cooling point | (B)
(D) | boiling point
break point | | 118. | 3. The unit of measurement for ozone layer thickness is | | | ness is | | | (A)
(C) | | (B)
(D) | Arithmetical units None of the above | | 119. A positive Langelier's index signifies that the water is | | | vater is | | | | (A)
(C) | | (B)
(D) | saturated
Neutral | | 120. | 0. Hydrogen sulphide in sewers causes | | | | | | (A)
(C) | Methane production
Staling of sewage | (B)
(D) | Bursting
Crown corrosion | | 121. | 1. BOD ₅ at 20 ^o C reaction rate constant (K) for domestic wastewater is aro | | | mestic wastewater is around | | | (A)
(C) | 0.25/day
0.10/day | (B)
(D) | 0.20/day
0.30/day | | 122. | 122. Sodium fluoride (NaF) is used in water treatment for | | | nt for | | | (A)
(C) | Defluoridation
Fluoridation | (B)
(D) | Chlorination None of the above | | 123. | BOD ₅ /O | COD ratio is an indication of su | ibjecting | wastewater for | | | (A)
(C) | Biological waste treatment
Preliminary treatment | (B)
(D) | Tertiary treatment Primary treatment | | 124. | Manning's formula is used to design | | | | | | |------|---|---|------------|----------------------------------|--|--| | | (A)
(C) | Pumps
Stacks | (B)
(D) | <u>e</u> | | | | 125. | What percentage of MLSS is considered as MLVSS in wastewater treatment? | | | | | | | | (A)
(C) | 100%
75% | (B)
(D) | 80%
50% | | | | 126. | Total BOD refers to | | | | | | | | (A)
(C) | CBOD
ThOD | (B)
(D) | NBOD
CBOD + NBOD | | | | 127. | Stabilization ponds are generally provided with | | | | | | | | | lower detention periods no detention periods | (B)
(D) | | | | | 128. | High organic loading is given to | | | | | | | | (A)
(C) | anaerobic ponds
facultative ponds | (B)
(D) | aerobic ponds
oxidation ponds | | | | 129. | Settling | Settling velocity of a particle in a sedimentation tank is determined using | | | | | | | (A)
(C) | Chezy's equation
Manning's equation | (B)
(D) | | | | | 130. | Measurement of noise is generally done by | | | | | | | | (A)
(C) | | (B)
(D) | aqua meter
None of the above | | | | 131. | The unit of measurement of noise is | | | | | | | | (A)
(C) | ppb
dB | (B)
(D) | percentag None of the above | | | | 132. | Waste produced by IT-ITES sector is termed as | | | | | | | | ` ′ | solid waste
liquid waste | (B)
(D) | e-waste
gaseous waste | | | | 133. | Carboxy-haemoglobin found in human blood is due to | | | | | | | | (A)
(C) | smoking
exercising | (B)
(D) | drinking
None of the above | | | | 134. | Rapid sand filters are grouped under | | | | | |------|---|--|------------|--|--| | | ` / | dual filters
gravity filters | (B)
(D) | single filters
pressure filters | | | 135. | Rate of | Rate of filtration in slow sand filters is generally | | | | | | (A)
(C) | 6,000 lt/hr.m ²
400 lt/hr.m ² | | 250 lt/hr.m ²
1,000 lt/hr.m ² | | | 136. | Peri-kinetic flocculation is due to | | | | | | | | Coagulation
Filtration | (B)
(D) | Sedimentation
Brownian Motion | | | 137. | Vigorous stirring induces | | | | | | | \ / | Orthokinetic Flocculation
Peri-kinetic Flocculation | | Flocculation None of the above | | | 138. | Hardne | Hardness in very hard water is more than | | | | | | | 1,000 mg/L
250 mg/L | (B)
(D) | 300 mg/L
600 mg/L | | | 139. | The bac | eterial density most likely to be pr | esent | in water is reported as | | | | (B)
(C) | Mixed liquor suspended solids (Total solids (TS) Most probable number (MPN) Total Suspended Solids (TSS) | MLSS | | | | 140. | Most commonly used joint in cast iron pipes used in water supplies is | | | | | | | | Flanged joints
Collared joints | (B)
(D) | Spigot and socket joint
Victaulic joints | | | 141. | Water hammer is a phenomenon generally observed in | | | | | | | | gravity mains
pumping mains | (B)
(D) | open channels
None of the above | | | 142. | A geolo | ogic formation which yields water | in a s | ignificant quantity is termed as | | | | (A)
(C) | aquitard aquifuge | (B)
(D) | aquiclude
aquifer | | | 143. | An impervious formation that neither contains nor transmits water is called | | | | |------|---|---|------------|---------------------------------------| | | | Aquifuge
Confined Aquifer | (B)
(D) | | | 144. | Water-l | oorne diseases are generally due to | 0 | | | | | pathogens
contaminants | (B)
(D) | chemicals
None of the above | | 145. | Grit chamber is used in | | | | | | \ / | Air Pollution Control
Wastewater Treatment | \ / | Water Treatment
None of the above | | 146. | Per capita water supply in an average Indian city is | | | | | | | 250 lpcd
150 lpcd | ` / | 135 lpcd
200 lpcd | | 147. | Excreta disposal in rural areas is generally done through | | | | | | ` / | water closet
pit privy | (B)
(D) | flushing cistern
None of the above | | 148. | Average water pressure head for a single storey house is | | | | | | \ / | 10 m
7 m | (B)
(D) | 20 m
15 m | | 149. | The first International Earth Summit was held at | | | | | | ` / | Johannes Berg
Kyoto | (B)
(D) | | | 150. | Cherno | byl disaster in Russia happened ir | the y | ear | | | (A)
(C) | 1986
2006 | (B)
(D) | 1996
1886 | ***